Snellius @ SURFsara
General information on the system and remote access (SSH) are available at: https://servicedesk.surfsara.nl/wiki/display/WIKI/Snellius. Some additional notes are currently available at: https://github.com/microhh/microhh/issues/73.
Modules
Snellius uses a module system to load and/or switch between different compilers, libraries, etc. The following command unloads all modules (module purge
) and loads (module load
) the ones required to compile MicroHH, generate the input files with Python, merge the statistics with NCO, and visualise the results with Ncview:
module purge
module load 2022
module load CMake/3.23.1-GCCcore-11.3.0
# MicroHH + GCC
module load foss/2022a
module load netCDF/4.9.0-gompi-2022a
module load CUDA/11.8.0
module load Clang/13.0.1-GCCcore-11.3.0
# Python et al.
module load Python/3.10.4-GCCcore-11.3.0
module load NCO/5.1.0-foss-2022a
To simplify setting up the environment, it can be convenient to put the module commands in a shell script in your home directory (e.g. setup_env.sh
), after which you can setup the environment using:
source ~/setup_env.sh
Slurm load balancer
Like most supercomputers, Snellius uses a queuing system (Slurm) to schedule all the individual jobs from users. Instead of running the model directly from the login nodes, experiments have to be submitted to one or multiple compute nodes using a Slurm script.
The script below (also available in microhh_root/misc/runscripts/snellius_cpu.slurm
) shows an example for running the drycblles
case on 128 CPU cores (1 nodes) in the thin
partition:
#!/bin/bash
#SBATCH --job-name=drycblles
# Log file `stdout` and `stderr` (%j is replaced with a unique job ID):
#SBATCH --output=mhh-%j.out
#SBATCH --error=mhh-%j.err
# New (2023) Genoa CPU partition (https://servicedesk.surfsara.nl/wiki/display/WIKI/Snellius+usage+and+accounting):
#SBATCH --partition=genoa
# Genoa nodes have 192 cores/node. Slurm automatically determines the required number of nodes:
#SBATCH -n 192
#SBATCH --cpus-per-task=1
#SBATCH --ntasks-per-core=1
# Maximum wall clock time:
#SBATCH -t 08:00:00
# E-mail notifications, options are: {none, begin, end, fail, all}:
#SBATCH --mail-type=end
#SBATCH --mail-user=ceo@microhh.org
module purge
module load 2022
module load CMake/3.23.1-GCCcore-11.3.0
module load foss/2022a
module load netCDF/4.9.0-gompi-2022a
module load CUDA/11.8.0
module load Clang/13.0.1-GCCcore-11.3.0
export OMPI_MCA_fcoll="two_phase"
export OMPI_MCA_io_ompio_bytes_per_agg="512MB"
srun ./microhh init drycblles
srun ./microhh run drycblles
For setting up and testing new cases, it can be convenient to run the case with a wall clock limit (#SBATCH -t
) of less than one hour. This automatically places your job in the short queue, for which the waiting time if typically very short.
New jobs can be submitted using the sbatch
command (sbatch my_slurm_script.slurm
), the status of existing jobs can be listed with the squeue
command, and running (or queued) jobs can be cancelled using scancel <jobid>
, where <jobid>
is the unique ID listed when running the squeue
command.
More information about the different Slurm options is available in the Slurm documentation or the Snellius domentation.
Best practices
You should always run your experiments on the GPFS
scratch
(/scratch-shared/your_username/
) file system, which is designed for the storage of large volumes of data, and fast parallel I/O.Files on the
scratch
file system are automatically deleted after 14 days, so archive them in time to e.g. the SURFsara archive at/archive/your_username/
.Always specify the following two OpenMPI parameters before
srun ./microhh init case_name
(see run script above), otherwise I/O becomes a bottleneck:
export OMPI_MCA_fcoll="two_phase"
export OMPI_MCA_io_ompio_bytes_per_agg="512MB"